SpeechOp Demo Page

SpeechOp: Inference-Time Task Composition for Generative Speech Processing

Abstract

While generative Text-to-Speech (TTS) systems leverage vast "in-the-wild" data to achieve remarkable success, speech-to-speech processing tasks like enhancement face data limitations, which lead data-hungry generative approaches to distort speech content and speaker identity. To bridge this gap, we present SpeechOp, a multi-task latent diffusion model that transforms pre-trained TTS models into a universal speech processor capable of performing a wide range of speech tasks and composing them in novel ways at inference time. By adapting a pre-trained TTS model, SpeechOp inherits a rich understanding of natural speech, accelerating training and improving S2S task quality, while simultaneously enhancing core TTS performance. Finally, we introduce Implicit Task Composition (ITC), a novel pipeline where ASR-derived transcripts (e.g., from Whisper) guide SpeechOp's enhancement via our principled inference-time task composition. ITC achieves state-of-the-art content preservation by robustly combining web-scale speech understanding with SpeechOp's generative capabilities.

SpeechOp Overview Figure

Speech Processing Example 1: obj1_noisy

Speech Processing Example 2: obj0_noisy

Speech Processing Example 3: Reverberant Speech

LibriMix: Speaker Separation

Clean Background

Noisy Background

Zero-Shot TTS Examples

Example 1

Example 2

Real Edit Examples

Example 1

Example 2